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Design and Analysis of Quasi-Integrated
Horn Antennas for Millimeter and
Submillimeter-Wave Applications

Geofge V. Eleftheriades and Gabriel M. Rebeiz, Member, IEEE

Abstract—The purpose of this paper is to present a systematic
process for the design of multimode quasi-integrated horn an-
tennas, and to provide a full range of practical antenna designs
for mullimeter and submillimeter-wave applications. The design
methodology is based on the Gaussian beam approach and the
structures are optiinized for achieving maximum fundamental
Gaussian coupling efficiency. For this purpose, a hybrid tech-
nique is employed in which the integrated part of the antennas
is treated using full-wave analysis, whereas the machined part is
treated using an approximate model. This results in a simple and
efficient design process. The developed design procedure has been
applied for the design of a 20-, 23-, and 25-dB quasi-integrated
horn antennas, all with a Gaussian coupling efficiency exceeding
97%. The designed antennas have been tested and characterized
using both full-wave analysis and 91/370GHz measurements.
The quasi-integrated horn antennas are also examined as feed
clements for Cassegrain antenna systems and are proven to be
comparable to the traditional machined corrugated horn feeds.

1. INTRODUCTION

HE INTEGRATED-CIRCUIT horn antenna was intro-

duced in [1] and analyzed using a full-wave analysis
technique in [2]. It consists of a dipole (or monopole) feed
evaporated on a thin dielectric membrane which is suspended
in a pyramidal cavity etched in silicon or GaAs. Recently, this
antenna has been used in several millimeter and submillimeter-
wave applications including a double-polarized antenna design
at 93.GHz [4], a 256 element imaging array at 802 GHz [5],
and a monopulse tracking system at 94 GHz [6]. However, the
wide flare-angle of the integrated-circuit horn antenna, which
is dictated by the anisotropic etching involved in its fabrication
(70° in silicon), limits its useful aperture size to 1.6 A and its
gain to 13 dB. To this end the quasi-integrated horn antenna
was introduced [3], which consists of a machined small flare-
angle pyramidal section attached to the integrated portion (Fig.
1). The resulting structure is a simple multimode pyrami-
dal horn with circularly symmetric patterns and low cross-
polarization, which is particularly attractive for submillimeter
quasi-optical receiver applications. The minimum machined
dimension involved in its geometry is around 1.5\ which
enables its fabrication to frequencies up to 2 THz. The purpose
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Fig. 1. The general configuration of the quasi-integrated multimode horn

antenna.

of this paper is to describe a systematic approach towards the
design of these horn antennas, and-to provide a full range
of practical quasi-integrated horn antenna designs along with
their detailed radiation characteristics. Since a very desirable
property of antennas intended for use in quasi-optical systems
is the high Gaussian content of their radiated fields [7], the
developed design methodology is based on the optimization
of the quasi-integrated horns for achieving maximum funda-
mental Gaussian coupling efficiency. The Gaussian coupling
efficiency is particularly important in quasi-optical receiver
applications because it directly influences the total system
performance with a pronounced effect on the receiver noise
temperature [8]. The “Gaussian-beam” approach, proposed
here towards the design of multimode horns with symmetric
patterns utilizes the aperture fields directly and determines
the excitation Ievel of each mode in a simple fashion, unlike
traditional methods which require cumbersome manipulations
of the far-field radiation patterns [12]-[16]. Also, the large
difference between the flare angles of the integrated and the
machined parts of the quasi-integrated horn antenna enables
the treatment of these two portions independently, resulting in
a simple and efficient design process. Specifically, the short
and wide flare-angle integrated portion is treated using full-
wave analysis whereas the long but gradually flared machined
section is analyzed using an approximate model.

An outline of the work presented in this paper is as
follows. In Section II, a radiating aperture (both with and
without phase error) is analyzed for providing maximum
coupling efficiency to a fundamental Gaussian beam, and the
corresponding necessary conditions for the aperture modes

0018-9480/93$03.00 © 1993 IEEE



ELEFTHERIADES AND REBEIZ: DESIGN AND ANALYSIS OF QUASI-INTEGRATED HORN ANTENNAS 955

are derived. In Section III the optimum aperture fields are
examined as feeds to a Cassegrain reflector. The approximate
technique for the analysis of the machined section is presented
in Section IV along with the description of the design pro-
cedure. Subsequently, in Section V, specific quasi-integrated
horn designs are considered and verified both numerically
using a full-wave analysis technique and experimentally at 91
GHz and 370 GHz.

II. MULTIMODE APERTURE ANALYSIS FOR MAXIMUM
FUNDAMENTAL GAUSSIAN COUPLING EFFICIENCY

Consider a square aperture of side a in a ground-plane which
is radiating in the half-space z > 0. The transverse electric
field of the aperture at z = 0 can be expanded in terms of the
modes of a square waveguide of the same side a:

M,N
Etap (z,y) = Z {Amnéﬁ(x, )
m,n

+ Cranrn (2,9)}, Cmo =0, 0

The TE/TM waveguide modes .5, e
thonormalized according to:

rsToa) = [ Emna)

apert

- Epg(,y) dr dy = bmpOng.

are considered or-

@

In (1), it is assumed that only modes with subscripts (m =
1,3,5---M and n = 0,2,4,6---N) are present as is the
case of a pyramidal horn which is either fed by a centered
Hertzian dipole or by a waveguide which supports only the
dominant TE;o mode [2]. We now proceed to determine the
modal coefficients A,,,,, Bmx S0 that the coupling between the
aperture field and a fundamental Gaussian beam is maximized.
If the copolarized and cross-polarized components of the
aperture field are defined to be the Ej ,p, and the Ey 4y
components respectively, then the transverse electric field can
be rewritten in the form:

Eyap(z,y) = Z e, e, (z,y),
M,N
Epop(z,y) = 28, UP (z,y) 3)

where the orthonormalized copolarized and cross-polarized
hybrid modes Wg2,, , ¥eP are defined by

\/26,—,, m+n 1
— (-1
v (z,y) =< -cos [ —— ) cos (%) 4
ol <a/2, 1yl < a/2
0, otherwise.
( \/2¢,
Yo (—nyEE

. sin m;”” sin (%y) )
Jz| < a/2, |yl < af2
otherwise.

\II;‘:{’n(x’ y) =4

L0,

In (4) and (5) the origin of the Cartesian coordinates is located
at the geometrical center of the aperture and €, = 2—8,0 is the
Neumann number. The corresponding copolarized and cross-
polarized modal coefficients of (3) are related to the TE/TM
modal coefficients of (1) through:

g — nCpn — MmAmn
mn — /—m2 + 712 ?
A
d',zyfn - nAmn + mCpp ) (6)

vm? +n?
Now the coupling efficient n(w,) of the aperture to a funda-
mental Gaussian beam of waist radius w,, which has its waist
on the aperture is calculated to be [17], [18]:
2

M,N
Z df?gnlmn (wO)
n(w,) = T;\;T;\r ™
T S (B2 + |4 )
2 mn mn
where
Imn(wo) = //
apert

W (z,y) exp (—(2° + y°)/wl) dz dy. (8)

We wish at this point to determine the modal coefficients d5o,
and d®2, so that the coupling efficiency n(w,) is maximized.
For this purpose, the application of Schwarz’s inequality to
(7) immediately implies that the maximum coupling efficiency
Nmax(W,) in the presence of cross-polarization is obtained
from:

M,N
> o (wo)|?

__mn
Nmax (Wo) = T

[\

M,N
Z |dco
MW ®
> (18] + |d7Enl?)

m,n

with the corresponding copolarization modal coefficients de-
termined by:
drn

—2T — = constant.
Inn(w,)

(10

Condition (10) is recognized to be the condition required

for approximating (in the mean square sense) a fundamental
Gaussian beam in terms of the aperture modes ¥¢?, . Further-
more, when the cross-polarization vanishes the best maximum
coupling efficiency is achieved and is given by:

M,N
> o (w5)?

o) = me 11
'nmax(w) wgﬂ_ ( )

N
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Fig. 2. The maximum Gaussian coupling efficiency as a function of wo,/a
ratio when modes up to (TEps, N/TMyy n,m =1,3---M,n =0,2--- N)
are available for beam-shaping on a radiating square aperture of size @ which
is assumed embedded in an infinite ground plane.

TABLE I
OPTIMUM PARAMETERS FOR MAXIMUM FUNDAMENTAL GAUSSIAN
COUPLING EFFICIENCY FOR CERTAIN PRACTICALLY ENCOUNTERED
APERTURE MODES AVAILABLE FOR BEAMSHAPING (UP TO. TE s n/TM s )

Available modes (M,N) | (1,0) | (1,2) | (1,2)4+TE3 | (3,2)
o /a 043|034 | 032 ] 020

cpl. efficiency : fma: | 84% | 98.5% 99.2% 99.7%
—d%dg 051 0.56 0.64

—dz [y R - 0.11 017
—dss/dio N 5 5 011

in which case the corresponding condition on the modal
coefficients is:

NAmn = —mCryn.

(12)

The maximum coupling efficiency uyax(w,) of (11) still
depends on the waist radius w, and it is shown in Fig. 2 as a
function of the ratio w,/a for various indices (M, N). Some
interesting features of this graph are discussed below from
the point of view of using the aperture modes to synthesize a
certain fundamental Gaussian

1. For each pair of indices (M, N) there exists a corre-
sponding optimum ratio w, opt/a for which the coupling
efficient attains a global maximum.

2. Large values of w,/a result in poor coupling efficiencies
since most of the synthesized Gaussian power spreads
outside the aperture where the aperture electric field
vanishes.

3. For a large number of modes available for beamshaping
on the aperture, any fundamental Gaussian mode satisfy-
ing w,/a < 0.34 can be synthesized with corresponding
coupling efficiencies approaching 100%. A 100% cou-
pling efficiency is not possible because the synthesized
Gaussian beam is always truncated.

In Table I we show the optimum relative magnitudes be-

tween the modes as computed numerically from (8) and (10),
along with the corresponding optimum w, opt/a ratio, for
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Fig. 3. Universal E and H patterns for the cases (M = 1, N = 2) (left),
and (M = 3,N = 2) (right), v = (27/X)a sin(6). In the H-plane, the
paraxial approximation is assumed i.c. cos (§) & 1 in the main beam.

some practically encountered aperture sets of modes. In Fig.
3 we also show the calculated universal far-field E and H
patterns for the two cases (M = 1, N = 2),(M = 3,N = 2)
and when the aperture modes are excited according to Table 1.
It is interesting to point out that for the case (M = 1, N = 2),
the corresponding ratio of the coefficient of the copolarized
hybrid mode given by cos (rz/a) cos (2ry/a) to the dominant
mode, given by cos(rz/a), is found to be v/2d53/dyy =
0.72. This ratio is a compromise between the value of 0.66
required for equalization of the 10 dB beamwidth in the E
and H far-field planes and the value of 0.84 required for
the cancellation of the E-plane sidelobe [13]. This “far-field”
approach of determining the excitation levels of the .aperture
modes requires the computation of the Fourier transforms of
the aperture fields, in contrast to the Gaussian beam approach
which directly utilizes the aperture fields. Furthermore, the
application of the above far-field design criteria for achieving
symmetric patterns becomes cumbersome as the number of -
aperture modes increases, unlike the Gaussian beam approach
which determines the excitation level of every available mode
through the simple condition of (10).

The above analysis is valid exactly provided that there
is no phase error on the radiating aperture. However,
if the aperture is excited by a horn-taper then spherical
phase error is introduced which can be approximated by a
quadratic wavefront Q g(z, y) of curvature R (i.., Qr(z,y) =
exp (—(jm/Ar)(z® + y?)). The consequences of this phase
error to the performance of dual-mode horns has been studied
by Profera [19] who showed that the general effect is the
deterioration of the circular symmetry of the patterns and the
increase of the sidelobe-level. The Gaussian beam analysis
presented above can be extended in a straightforward manner
to the case of a nonzero phase error and thus it can still
provide design conditions for the aperture modes. In this case,
the optimum fundamental Gaussian beam must have its beam
waist located at a distance Z,, behind the aperture and inside
the horn so that its aperture radius of curvature (R¢) equals
the radius of curvature of the aperture field (R) (see Fig. 4). In
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Fig. 4. The definition of the waist radius w, and the aperture beam radius
wqp for the matched Gaussian beam. The beam waist is located at a distance
Zap behind the radiating aperture of the quasi-integrated horn antenna.

the presence of phase error, the copolarized component of the
aperture electric field is assumed to be represented in the form:

= QR(»’C y)

Z dir Ui, (@

Ey,ap (x y y)

z,y). (13)

The corresponding coupling efficiency to a fundamental Gauss-
ian mode of aperture beam radius w,, and of aperture radius
of curvature Rg is given by [18]:

N(Wap) =

[/ 6jk(z2+y2)/2RGe—(m2+y2)/w§pEy’ap(x’y) dz dy

aperture

Tw?

— // |Eap(z,y)|? dz dy

aperture

(14)

If now in (14) we choose the aperture field radius of curvature
to equal the Gaussian beam radius of curvature, then the
quadratic phase factors are eliminated and the corresponding
Gaussian coupling efficiency retains the form of (7). However,
in this case the beam waist radius w, should be replaced by
the aperture beam radius w,, (Fig. 4) and the copolarized
field expansion coefficients dZo, should be replaced by the
quadratically phase-modulated coefficients de.. Therefore,
the conditions on the coefficients df,‘jn for maxunum coupling
efficiency are still governed by (10), (12) and the correspond-
ing Gaussian coupling efficiency is still given by (11).

ITI. COUPLING TO A CASSEGRAIN ANTENNA

In this section the multimode horns of Table I are examined
as feed elements for Cassegrain reflectors comprising typical
submillimeter quasi-optical antenna systems. For a distributed
object, the pertinent coupling efficiency of the Cassegrain
antenna system is the Gaussian coupling efficiency. Therefore,
the optimum coupling efficiency of the Cassegrain system
coincides with the optimum coupling efficiencies of the feed
elements as tabulated in Table L

Tertiary focus
(Confocal)
Lens
-y focus

» i .
-
Secondary mirror

—

Fig. 5. A Cassegrain antenna system and the associated ray-optics.

In order to complete the efficiency analysis to a Cassegrain
antenna system, we also investigate the case for which the
object is a point source at infinity. In this case, the per-
tinent coupling efficiency of the system becomes the cou-
pling to a plane wave. For a long focal-length Cassegrain
reflector, the image of a point source at infinity can be
accurately represented by the corresponding Airy intensity
pattern J1(kp sin 6,)/(kp sin 6,), where 6, is the semi-angle
subtended by the subreflector on the secondary focal plane, and
p is the distance from the reflector axis [9], [10] (see Fig. 5).
If a horn-feed having an aperture field distribution E,,(z,v)
is placed on the secondary focus, the corresponding coupling
efficiency can be directly computed from the normalized
overlapping integral with the Airy function:

]

horn apert.

Ji( kp sin 6,)

MNsec. =
2

J1(kp sin 6, ) E.o(z,y) dz dy

(kp sin 6,)

ddy//

horn apert.

lEaP('% y)|2dm dy

L)

where E.,(z,y) is the copolarized component of the aperture
field. For a given horn-aperture distribution, the semi-angle
6, should be selected for maximum coupling efficiency. At
this point, we will also examine the coupling to the confocal
tertiary focus, which can be computed by transferring the Airy
pattern from the secondary to the tertiary focus (see Fig. 5).
Since the lens configuration is confocal, and assuming a thin
lens of infinite extend and of focal length f, on the tertiary
focal plane the Fourier transform of the Airy pattern is formed,
which is a uniform circular distribution of radius y = f sin 6,.
Hence, on the tertiary focus the coupling efficiency becomes:

(15)

2

Eeoap(,y) dz dy
disc my> ) )
Ty2 // |Eap(z,y)|? dz dy

horn apert.

(16)

Ther. =

The coupling efficiency expressions of equations (15) and
(16) have been employed to construct Table I in which
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TABLE 11
THE COUPLING EFFICIENCIES ON THE SECONDARY AND C ONFOCAL TERTIARY FOCI OF A CASSEGRAIN ANTENNA FOR THE MULTIMODE FEEDS OF TABLE I, FOR A
DiFFRACTION LIMITED CONICAL CORRUGATED HORN OF RADIUS p = a/2, AND FOR A GAUSSIAN-BEAM FEED OF WAIST RADIUS w,.

Type of feed Optimum (sin 6,) for Cpl. Efficien. Cpl. Efficien.
coupling to Sec. focus | on Secondary foc. | on Tertiary foc.
Conical Corrugated, p = a/2 ;'—/1;3 83.7% 86.9%
Gaussian beam, 075 = A/7w, #‘—2—- 81.5% 81.5%
Multimode up to (1,2) i—;l:sp 83.0% 83.6%
Multimode up to (1,2)+TEsg LS 83.4% 83.8%
Multimode up to (3,2) % 82.8% 82.9%
TABLE III

DECOMPOSITION OF THE APERTURE FIELDS OF THE MULTIMODE FEEDS, OF THE AIRY PATTERN, AND
OF A DIFFRACTION LIMITED CORRUGATED HORN INTO THE FIRST FEW GAUsS-HERMITE MODES

Mode Grn | Ji(kpsind,)/(kpsind,) | Up to (1,2) | Up to (1,2)4+TEs, | Up to (3,2) | Corrug.
00 0.9025 0.9925 0.9958 0.9984 0.9903
02 0.0 -0.0268 -0.0068 0.0023 0.0
20 0.0 0.0238 0.0046 -0.0183 0.0
04 -0.1418 -0.0305 -0.0299 -0.0393 -0.0737
40 -0.1418 -0.0907 -0.0575 -0.0302 -0.0737
22 -0.1158 -0.0006 -0.0377 0.0044 -0.0602
06 -0.1028 -0.0048 -0.0041 0.0058 0.0243
60 -0.1028 0.0277 -0.0070 -0.0008 0.0243
24 -0.0797 -0.0070 -0.0012 0.0019 0.0188
42 -0.0797 0.0024 0.0155 -0.0010 0.0188

the optimum coupling efficiencies of the multimode horns of
Section II are compared to the optimum efficiencies achieved
by a diffraction limited conical corrugated horn of radius a,
and by a fundamental Gaussian-beam feed of waist radius w,.
In addition, following Padman [9] we decompose in Table III,
the fields of the multimode horns, the field of the diffraction
limited corrugated horn, and of the Airy pattern into their
first few Gauss-Hermite modal components (for details see
the Appendix).

From Table II, it is observed that the multimode horn anten-
nas present 2% higher coupling efficiencies to the Cassegrain
reflector than to a pure Gaussian-beam feed, which is due
to the presence of higher order Gauss-Hermite modes in
their fields (see Table III). The corresponding optimum edge-
taper for the multimode horns is found to be around 10.2
dB which is close to the value of 10.9 dB required in
the case of a pure Gaussian-beam feed. Furthermore on the
tertiary focus, the corrugated horn couples better than the
multimode horns. This higher coupling efficiency is achieved
because the Fourier transforming action of the lens reverses
the phase of the Gog, G0, G24 and G 4o Gauss-Hermite modal
components of the Airy pattern, enabling a better match to
the aperture distribution of the corrugated horn (see Table III
and appendix). In order to ensure that the involved modes
pass through the lens, so that the higher coupling efficiency
is achieved, the lens diameter should be at least six beam
radii [9]. In the case of the multimode horns, the component
Gauss-Hermite modes are already excited in antiphase as it
can be observed from Table II. Therefore, for the multimode
horns the effect of the lens on the tertiary focus is not very

beneficial to the coupling efficiency of the Cassegrain antenna
system.

IV. APPROXIMATE ANALYSIS OF THE MACHINED
SEQTION AND DESCRIPTION OF THE DESIGN PROCESS

Consider the gradually-flared pyramidal machined section of
axial length Ljs and of half flare-angle 6, (see Fig. 1) which
is assumed excited at its throat by the (m = 1,3,5--. M and
n = 0,2,4,6---N) locally propagating waveguide modes.
Since the machined section is gradually flared and the incident
modes propagating, reflections at the throat are considered
negligible and the corresponding transverse electric field is
given by:

M,N
Et,th'r(m, y) = Z {A')t'r’:néﬁr}f?’tTE(ma y)
m,n

+ G et ™ (5, )} (17)

To a first order approximation we can assume that each mode
preserves its carried power upon propagating from the throat
to the aperture. Also, each mode acquires a phase shift which
can be computed by integrating the phase shift contributions
from each infinitesimal section of length dz:

L

D = Bmn(z) dz

(18)
where [(3,,,(2) is the local propagation constant of the mmnth-
mode. The above phase shift has been used extensively for the
design of multimode horns [12], [16] and it can be rigorously
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justified through a coupled-mode analysis of gradually flared
tapers [20]. The aperture field is assumed to be modulated
by a quadratic phase factor Qr,(z,y) of curvature Ly =
a/(2 tan 6,) with Ly being the total virtual length of the
taper. Under the above assumptions and neglecting reflections
from the aperture of the tapered section (considered electrically
large), the aperture field is simply given by:

Et,ap (37; y) = QLT (.’L’, y)
M,N
: Z {A‘T‘rfnéf’}:ﬁTE(x, )

m,n

+ Crb k™ (z,y)}

mn-mn

(19)

with the quadratically modulated aperture modal coefficients
related to the throat modal coefficients through:

A%,n = Agzbn V Tz’;iTE/ Yo exp (=j®mn) (20)
éﬁf’n = Cfr}:n YTZ};L’TM/YO exp (—jPmn) (21)

where Y;*, is the throat admittance for the mnth mode and Y,
is the free-space intrinsic admittance which has been assigned
to the aperture modes. Also, the corresponding copolariza-
tion and cross-polarization quadratically modulated coeffi-
cients dﬁ,‘jn,oif,{’n are still related to A% €9 through (6).
For convenience, from now on these quadratically modulated
coefficients will be simply referred to as the radiating aperture
modal coefficients. This approximate model can be used for
predicting the radiating aperture modal coefficients once the
throat modal coefficients have been determined. Note that just
for predicting the magnitude of the radiating aperture modal
coefficients, knowledge of the machined section length Lys is
not required.

In order to optimize the structure of Fig. 1 for achiev-
ing maximum coupling efficiency to a fundamental Gaussian
beam, the integrated portion aperture size a, and the mode
converting step-size s (see Fig. 1) should be selected so that the
magnitudes of the modal coefficients at the radiating aperture
(determined by (20) and (21)) satisfy conditions (10) and
(12). On the other hand, the length Ljs and the flare-angle
6, of the machined taper should be selected using the phase
shift expression (18) to bring the radiating aperture modes in
phase. It should be noted here that the 180° phase difference
between the TE ,,,,,-mode and the corresponding TM,,,,-mode
required for the cancellation of the cross-polarization (see
(12)) should also be provided by the integrated portion and its
step-discontinuity. This is because these modes are degenerate
and therefore the machined taper cannot change their phase
difference. Along those lines a three-stage design process has
been established for the quasi-integrated horn antennas and is
summarized below:

1. The integrated 70° flare-angle section of the antenna
structure of figure 1 (including the step discontinuity)
is selected and analyzed independently of the machined
section. For this purpose, the dipole-fed integrated por-
tion is assumed to be terminated by an infinite square
waveguide of side (a; + 2s) and is analyzed using
the full-wave analysis technique of [2] to obtain the

throat modal coefficients A%* G2 . The junction cross-
section a, and the step size. s (see Fig. 1) are selected
so that the magnitudes of the radiating aperture modal
coefficients, as predicted by (20)—(21) and (6), satisfy the
optimal conditions (10) and (12) as closely as possible.

2. The infinite waveguide is now replaced by the gradually
flared machined section and the assumption is made that
the modal coefficients at the throat of the machined
section retain their computed values of stage 1. This
is a good approximation since the actual excited modal
coefficients are determined by the difference between the
integrated portion flare-angle and the machined section
flare-angle and this difference is always dominated by
the large 70° flare-angle of the integrated portion [13].
The length Ly, and the flare-angle 6, of the machined
section are then selected iteratively (using 18) so that the

-modal coefficients df,‘jn appear in phase on the radiating
aperture. The shortest possible length is chosen in order
to achieve the maximum bandwidth.

3. Finally, the length and the flare-angle of the machined
section are “fine-tuned” using the full-wave analysis of
[2] for the entire quasi-integrated horn antenna and again
for achieving maximum Gaussian coupling efficiency.
For this fine-tuning, the coupling efficiency expression
of (14) is used and the aperture field is obtained directly
from the full-wave analysis. As a general rule, we have
found that this fine-tuning only slightly modifies the
initially computed parameters Lys and 8, and therefore
its implementation need not be automated.

In Table IV we quantify several practical geometries of
integrated portions which have resulted from the first stage
of the design process. The optimum aperture coefficients have
been determined from (8), (10) and (12) and have already been
tabulated in Table I, whereas the magnitudes of the radiating
aperture modal coefficients have been predicted from the full-
wave analysis of the integrated portion and the approximate
model of (20)—(21) for the machined section. This table
suggests that necessary condition (10) for achieving maximum
fundamental Gaussian coupling efficiency can in practice be
closely satisfied, especially with the introduction of a mode
converting step-discontinuity. However, the relative modal
ratio required for the cancellation of the cross-polarization (12)
cannot be satisfactorily generated when maximum Gaussian
coupling efficiency criterion (10) is realized. Fortunately, the
associated 180° phase shift can exactly be achieved, resulting
in non-zero but low cross-polarization of the order of —22 dB
in the 45°-plane. In the next section, the integrated section
geometries of Table IV are used for the design of particular
quasi-integrated horn antennas.

V. NUMERICAL AND EXPERIMENTAL RESULTS FOR SPECIFIC
QUASI-INTEGRATED HORN ANTENNA DESIGNS

The algorithm of section IV has been employed for the
design of a 20 dB, a 23 dB and a 25 dB quasi-integrated
horn antennas, all with a fundamental Gaussian coupling
efficiency exceeding 97% and with a full-null beam efficiency
of about 99%. These designs provide a complete set of quasi-
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TABLE IV
COMPARISON BETWEEN THE OPTIMUM RELATIVE MAGNITUDES OF THE A PERTURE
MODES AND THE RELATIVE MAGNITUDES OF THE MODES L. AUNCHED AT THE
APERTURE BY FOUR PRACTICAL INTEGRATED PORTION SECTIONS. THE EXCITING
Di1POLE 1S POSITIONED AT A DISTANCE OF 0.39\ FROM THE APEX OF THE HORN.
(Tue FirsT GEOMETRY ExCITES MODES UP TO THE TE 12/TM12 AND THE
PERTINENT OPTIMUM VALUE IS 0.51, WHEREAS THE REST THREE GEOMETRIES
Excite ALso THE TE3p MODE AND THE PERTINENT VALUE IS 0.56)

Optimum | as = 1.35) | @, = 1.52X | a; = 1.35) | @, = 1.57A
s=0.0 s=0.0 s=0.17A s=00
|dis®|/1dT5| | 0.56(0.51*) 0.52 0.50 0.55 0.51
[d22]/ ]| 0.114 - 0.110 0.117 0.146
arg(CHH/A®) 180° 200° 183° 182° 179°
[C1/1A%] 2.0 45 44 5.1 43

integrated horn antennas for applications in the millimeter and
submillimeter-wave spectrum. Although in the design process
the analysis of the machined section is performed using the
approximate method of Section IV, the computation of the
radiation characteristics of the finally designed horns is carried
out using the full-wave analysis technique of [2]. Furthermore,
using this full-wave analysis along with 6 GHz scale-model
measurements [3] it was verified that the input impedance of
the feeding strip-dipole in the integrated portion of the horn is
not affected by the attachment of the machined section. This
is due to the fact that the input impedance of the feeding
strip-dipole is mainly determined by its local geometrical
environment which remains unaffected by the attachment of
the machined section. The input impedance for the integrted-
circuit horn antennas has already been analyzed theoretically
and characterized experimentally in [2] where it was shown
that by adjusting the dipole position along the horn axis, the
input impedance can be matched to either Schottky or SIS
diodes. Therefore, these results which are summarized in [2]
are directly applicable to the case of the quasi-integrated horn
antennas as well.

For the pattern‘measurements the antennas were mounted on
a two-axis computer-controlled gimbal mount and for source a
tunable 85-96 GHz Gunn diode oscillator, modulated at 1 KHz
was used. For the 20 dB horn, the signal was video-detected by
a beam lead Schottky diode which was soldered to the feeding
dipole on the dielectric membrane of the quasi-integrated horn
antenna. The corresponding detected signal had a 40 dB S/N
ratio and was fed to a PAR-124A lock-in amplifier. For the
23 dB horn, the output of the Gunn oscillator was fed to a
350-370 GHz quadrupler and the signal was detected by a
Bismuth microbolometer integrated with the feeding dipole
on the dielectric membrane. In this case, the corresponding
S/N ratio was 35 dB.

A. 20-dB Quasi-Integrated Horn Antenna

The geometrical parameters for the 20-dB realization were
calculated to be (a; = 1.35A,2s = 0.0,Ly; = 7). 60, =
9°,dp = 0.39)) and the numerically computed patterns
from the third stage of the design process along with the
corresponding 91 GHz measurements have been reported in
[3]. In Fig. 6 the principal patterns are compared to the
patterns obtained by analyzing the machined section using the
approximate method of Section IV. As shown, the approximate

TABLE V
THE MAIN RADIATION CHARACTERISTICS OF THE 20
dB QuasI-INTEGRATED HORN ANTENNA (SEE TEXT )

0.057, 7 1.057,

Gain 19.4dB 20dB 20.6dB

Aperture efficiency 60.6% 62.8% 65.4%
10dB Beamwidth 37°4£1° | 34°4+1.2°| 32°+ 1.8°
Sidelobe-level (E-plane) | —23dB | ~27dB | —26.3dB

Cross-pol.(45°) —22.5dB | —22.7dB | —23dB

Beam-efliciency (to -10dB) | 85% 86% 86.5%

Gaussian Coupling 96.4% 97.3% 96.9%

Gaussian Coupling rolloff | 95.5% 97.3% 96.5%

model agrees well with both the full-wave analysis and the
measurements thus verifying the approximations used in the
design process. Figs. 7-10 show the numerically computed vs.
the measured patterns at 86.5 GHz and 95.5 GHz, i.e. at the
edges of the 5% bandwidth; As shown, the 10 dB beamwidth
does not vary by more than 3° in this frequency range and
therefore for the 20 dB horn a pattern bandwidth of about
10% can be defined. The calculated phase center was found
to be located at a distance of 1.5 from the horn aperture for
the E-plane and at 1.4) for the H-plane. The phase center was
computed using the standard method of a least-square fit to
the residual far-field phase pattern [21]. The phase center was
also estimated by fitting an elliptic Gaussian beam having an
astigmatic location of its beam waist to the aperture field (see
the appendix). Due to the high Gaussian coupling efficiency
of the quasi integrated horn the two methods yielded similar
results to within a margin of 15%. The rest of the radiation
characteristics of this horn at the design frequency and at the
edges of the +5% bandwidth are summarized in Table V.
The indicated 10-dB beamwidth fluctuation corresponds to the
variation of the beamwidth in an azimuthal far-field cut. The
Gaussian coupling efficiency was computed from the full-wave
analysis of the entire antenna structure in conjunction with the
coupling formula (14). For this purpose the aperture radius of
curvature of the Gaussian beam (R¢) was obtained from the
expression:

_ Rp+ Ry
T2
where R and Ry are the radii of curvature of the aperture-
field in the E-plane and H-plane cuts respectively, as obtained
from a least-square fit to the phase of the aperture field. Also,
the Gaussian-beam rolloff was calculated at the edges of the
+5% bandwidth using the Gaussian-beam parameters which
were calculated at the design frequency f,.

R (22)

B. 23-dB Quasi-Integrated Horn Antenna

The optimized design parameters for a 23 dB quasi-
integrated horn were found to be (a, = 1.52X,25 =
0.17A, Lyr = 13),6, = 8.5°,dp = 0.39)) and the computed
principal patterns from both the full-wave analysis of the entire
antenna and from the approximate model of Section IV are
compared in Fig. 11 to corresponding 370 GHz measurements.
In Fig. 12 we include also the computed from the full-
wave analysis and the measured patterns for the 45°-plane.
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Fig. 6. 'The E (right) and H-plane (left) patterns of the 20-dB quasi-integrated
horn. The. 91 GHz measured patterns are compared to the full-wave
analysis and the approximate analysis patterns. Detailed patterns including
cross-polarization are shown in [3].

_IIIIIIIH]!IIIIIIII|IIII|” rllllll!|IIHIII|)]‘I’THHH|
F——. H—plane(th. — E-plane(th.) J
E____ H—glane exp)) _____ E- glaneiexp))_—
@ -10F =
=] E ]
g o =
.-
® r ]
a0 ]
® F n
> C ]
o pd
o) C ]
& C m
]
) C a
24 F ]
¢ =30 | =
_40 :LLJ_I_LII I|IlI\l\l!l‘”lH|||I|IIIIIIllll| g g Hl!!ll: N
-90 -860 -30 0 30 80 90

- Elevation angle, degrees

Fig. 7. The measured at 86.5 GHz E (right) and H-plaﬁe (left) patterns Vs,
the full-wave patterns of the 20-dB quasi-integrated horn.

The corresponding E/H and 45°-plane patterns at 358 GHz

are shown in Figs. 13 and 14 respectively and the radiation
characteristics of this horn are being summarized in Table VL.

For the 23 dB homn the phase center was calculated to be

at 3.7X inside the horn for the E-plane and at 3.5\ for the
H-plane. Also, the predicted and measured pattern-bandwidth
was found to be around 7% when based on the variation of
the 10 dB beamwidth. It should be noted here that although
the 10 dB beamwidth is sensitive to frequency variations,
the symmetry of the patterns and the corresponding Gaussian

coupling efficiency are quite insensitive as it can be inferred
from Table VL

C. 25-dB Quasi-Integrated Horn Antenna

In order to evaluate the efficiency of the design process
and to provide a full range of practical designs, a 25 dB
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Fig. 8. The measured at 86.5 GHz E/H and 45°-plane patterns vs.

the full-wave patterns of the 20-dB quasi-integrated horn
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Fig. 9. The measured at 95.5 GHz E (right) and H-plane (left) patterns vs.
the full-wave patterns of the 20-dB quasi-integrated horn.

’

quasi-integrated horn has also been designed and the computed
geometrical parameters were found to be: (a; = 1.52),2s =
0.0X,Lys = 19.5X,60, = 10°,dp = 0.39)). The radiation
patterns, as calculated from the full-wave analysis and shown
in Fig. 15.still exhibit excellent circular symmetry, low cross-
polarization and suppressed sidelobes. The main radiation
characteristics of this horn antenna are being tabulated in Table
VII. For this longer horn a step discontinuity at the throat of
the machined section was avoided in order to provide wider

bandwidth. The abrupt change of flare-angle at the throat of

the machined section still provides adequate mode conversion

as was indicated in Table IV. The corresponding pattern-

bandwidth for the 25 dB horn as computed from the change of

the 10 dB beamwidth was calculated to be around 7% and the

location of the phase center was computed to be at a distance

of 13X from the aperture for the E—plane and at 11X for the
H-plane.
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Fig. 11. The E (right) and H-plane (left) patterns of the 23-dB
quasi-integrated horn. The 370 GHz measured patterns are compared to the
full-wave analysis and the approximate analysis patterns.

Below, we discuss some general remarks for all the designed
quasi-integrated horn antennas. First, the pattern bandwidth
that was used to characterize the frequency sensitivity is quite
conservative and depending on the particular application one
may choose other criteria to define the bandwidth such as the
10-dB beam efficiency, or the Gaussian coupling efficiency
rolloff, in which case the antennas will appear much more
wideband. Second, we have found that the phase center of
all the antennas considered above is insensitive to frequency
variations, at least within the pattern-bandwidth that we have
used. Third, the maximum efficiency of a Cassegrain antenna
system is obtained when the focus of the antenna coincides
with the far-field phase center of the quasi-integrated horns. In
this case the computed coupling efficiency (to a plane wave)
of the Cassegrain antenna is about 82% for all of the three
designed quasi-integrated horns and for both the secondary
and the confocal tertiary foci of the Cassegrain antenna.
Therefore the use of a confocal lens is unnecessary and is
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Fig. 13. The measured at 358 GHz E (right) and H-plane (left) patterns vs.
the full-wave patterns of the 23-dB quasi-integrated horn.

not recommended for the quasi-integrated horn antennas, as
has been already pointed out in Section III

VI. CONCLUSIONS

An efficient procedure has been established for the system-
atic design of quasi-integrated horn antennas for millimeter
and submillimeter-wave applications. The design criterion was
selected to be the optimization of the structures for maximum
fundamental Gaussian coupling efficiency. The implementa-
tion of the design method is based on a hybrid technique in
which the integrated part of the antennas is analyzed using full-
wave analysis whereas the machined gradually flared part is
analyzed using an approximate model. The developed design
methodology has been employed for the implementation of
several quasi-integrated horn antennas with gains ranging
from 20 dB-25 dB and with Gaussian coupling efficiencies
exceeding 97%. Those antennas have been fabricated and
tested successfully at 91 GHz and 370 GHz and they exhibit
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Fig. 15. The calculated from the full-wave analysis patterns of the 25-dB
quasi-integrated horn.

TABLE VII
THE MAIN RADIATION CHARACTERISTICS OF THE 25

THE MAIN RADIATION CHARACTERISTICS OF THE 23
dB Quasl-I NTEGRATED HORN ANTENNA (S EE TEXT )

0.9657, 7 1.0357,

. Gain 22.2dB 22.8dB 23.6dB
Aperture efficiency 48.5% 52% 58.4%

10dB Beamwidth 27.6+0.2° |25+ 1.1°{22.5°+ 1.3°

Sidelobe-level (E-plane) —28dB —33dB —29.8dB
Cross-pol.(45°) -20.5dB | —21dB —~22dB
Beam-efficiency (to -10dB) | 86.6% 86% 86.6%
Gaussian Coupling 97.2% 97.3% 96.8%
Gaussian Coupling rolloff | 96.3% 97.3% 96.0%

dB Quasi-I NTEGRATED HORN ANTENNA (SEE TEXT )

0.965f, fo 1,035f,
Gain 24.7dB 25.5dB 26.2dB
Aperture efficiency 6% | 40% 44%
10dB Beamwidth 21.6+0.8°19.2°+0.7° { 17.5° £ 0.5°
Sidelobe-level (E-plané) —28.7dB —-30.8dB —-30.8dB .
Cross-pol.(45°) —22.6dB —24dB —24.7dB
Beam-efficiency {to -10dB) | 84.5% 85% 85%
Gaussian Coupling 97.1% 97.5% 97.4%
Gaussian Coupling rolloff 96.5% 97.5% 97.1%

radiation characteristics which make them Very attractive for
quasi-optical receiver applications to Terahertz frequencies.

APPENDIX

A. Phase Center Estimation Using a Matched Gaussian Beam

The far-field phase center of the quasi-integrated horns
can be estimated from the position of the beam waist of
the corresponding matched fundamental Gaussian beam. In
principle, higher order Gauss-Hermite modes should be taken
into account, but the high fundamental Gaussian content of
these antennas guarantee reliable results from only the funda-

In this case the coupling cfficiency of (14) becomes (Al),
which is shown at the bottom of this page, where wg, wn
are the aperture beam-radii in the E and H plane respectively
and Rg, Ry are the corresponding radii of curvature of the
phase distribution of the aperture field (computed directly
from the full-wave analysis). To estimate the phase center,
the aperture beam radii wp and wy are selected iteratively
so that the coupling efficiency 7,; attains its maximum. The
corresponding location of the phase center in the E and the H
planes is then obtained from the positions of the beam waists
inside the horn Zg, Zy, dccording to:

Rp g

mental Gaussian mode. However, for accurate phase center ZgH = —7%——2 (A2)
calculations an elliptic Gaussian beam with an astigmatic 1+ (_EELE)
location of its E and H plane beam waists should be used. TWE,H
2
// ejk(mz/zRH+y2/2RE)e_(m2/w§{+y2/W§:)Ey’ap(:[;7y) dx dy ‘
Dol = aperture (Al)

I

TWHWE
2

aperture

[Eap(@,y)|? do dy
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Note that for computing the coupling efficiency and in view

of the modal expansion of (1), the double integral in the
denominator of (Al) is obtained directly from the aperture
modal coefficients using Parseval’s theorem, whereas the
double integral in the numerator is separable and splits into
single integrations which are numerically carried out.

B. Expansion of the Fields into Gauss-Hermite Modes

The diffraction limited aperture fields of the multimode
antennas of Table I, can be expanded in terms of Gauss-
Hermite modes:

Eeo(,y) = Y, dyinGmn (2, ) (A3)

where the orthonormalized Gauss-Hermite modes G,,, are
given by:

2

Cron(2:9) =\ gmgmmtntrw?

+ Ho (V2 /wo) Ha(V2y/wo).  (A4)
In (A4), w, is the beam waist radius and H,, is the Hermite
polynomial of order p. If the expansion coefficients d,,,, are
normalized so that the square of their magnitudes represents
the fractional power radiated into the G, mode, then the
normalized coefficients D,,,,, can be defined by:

Dy =
// Eeo(,y) Gmn(z,y) dz dy
horn apert.
= fornap T (AS)

// |Eco(,y)|2 dz dy

horn apert.

In Table III these normalized expansion coefficients are tabu-
lated for the Airy-pattern, for a diffraction limited corrugated
horn, and for the multimode fields of Table I. The beam
waist radius w, is chosen in each case so that the fractional
power radiated in the fundamental Gauss-Hermite mode Ggg
is maximized. Also, note that if the Airy-pattern normalized
expansion coefficients are denoted by D7, . and the multimode
field normalized expansion coefficients are denoted by D2
and assuming that the same beam waist radius is used for
the expansions, then using the orthonormality of the Gauss-
Hermite modes in (15), it is implied that the coupling to the
secondary focus of the Cassegrain antenna is given by:

2

Nsec. = Z Dﬁmerm (A6)
m,n

Furthermore, upon a Fourier transformation a Gauss-Hermite
mode G, maps within a scale factor into itself and with a

sign change determined by :™*™, where 4 is the square root
of —1. This behavior is revealed using the integral [11}:

/ elkwe—mz/an(aS) dx':in\/ge_kz/an(k)‘ (A7)

Therefore, the modes which reverse sign upon a Fourier
transformation are those for which (m + n)/2 is odd.
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